博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【转】python 生成器和迭代器有这篇就够了
阅读量:5050 次
发布时间:2019-06-12

本文共 9280 字,大约阅读时间需要 30 分钟。

总结得特别好,转自:https://www.cnblogs.com/wj-1314/p/8490822.html

本节主要记录一下列表生成式,生成器和迭代器的知识点

  列表生成器

  首先举个例子

现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢?

方法一(简单):

info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]b = []# for index,i in enumerate(info):#     print(i+1)#     b.append(i+1)# print(b)for index,i in enumerate(info):    info[index] +=1print(info)

方法二(一般):

info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]a = map(lambda x:x+1,info)print(a)for i in a:    print(i)

方法三(高级):

info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]a = [i+1 for i in range(10)]print(a)

  生成器

什么是生成器?

  通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

  所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator

  生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。

  生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用,但是,不同于一般的函数会一次性返回包括了所有数值的数组,生成器一次只能产生一个值,这样消耗的内存数量将大大减小,而且允许调用函数可以很快的处理前几个返回值,因此生成器看起来像是一个函数,但是表现得却像是迭代器

python中的生成器

  要创建一个generator,有很多种方法,第一种方法很简单,只有把一个列表生成式的[]中括号改为()小括号,就创建一个generator

  举例如下:

#列表生成式lis = [x*x for x in range(10)]print(lis)#生成器generator_ex = (x*x for x in range(10))print(generator_ex)结果:[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
at 0x000002A4CBF9EBA0>

  那么创建lis和generator_ex,的区别是什么呢?从表面看就是[  ]和(),但是结果却不一样,一个打印出来是列表(因为是列表生成式),而第二个打印出来却是<generator object <genexpr> at 0x000002A4CBF9EBA0>,那么如何打印出来generator_ex的每一个元素呢?

  如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:

#生成器generator_ex = (x*x for x in range(10))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))print(next(generator_ex))结果:0149162536496481Traceback (most recent call last):  File "列表生成式.py", line 42, in 
print(next(generator_ex))StopIteration

  大家可以看到,generator保存的是算法,每次调用next(generaotr_ex)就计算出他的下一个元素的值,直到计算出最后一个元素,没有更多的元素时,抛出StopIteration的错误,而且上面这样不断调用是一个不好的习惯,正确的方法是使用for循环,因为generator也是可迭代对象:

#生成器generator_ex = (x*x for x in range(10))for i in generator_ex:    print(i)    结果:0149162536496481

  所以我们创建一个generator后,基本上永远不会调用next(),而是通过for循环来迭代,并且不需要关心StopIteration的错误,generator非常强大,如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如著名的斐波那契数列,除第一个和第二个数外,任何一个数都可以由前两个相加得到:

1,1,2,3,5,8,12,21,34.....

斐波那契数列用列表生成式写不出来,但是,用函数把它打印出来却狠容易:

#fibonacci数列def fib(max):    n,a,b =0,0,1    while n < max:        a,b =b,a+b        n = n+1    return 'done'a = fib(10)print(fib(10))

  a,b = b ,a+b  其实相当于 t =a+b ,a =b ,b =t  ,所以不必写显示写出临时变量t,就可以输出斐波那契数列的前N个数字。上面输出的结果如下:

1123581321345511235813213455done

  仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

  也就是说上面的函数也可以用generator来实现,上面我们发现,print(b)每次函数运行都要打印,占内存,所以为了不占内存,我们也可以使用生成器,这里叫yield。如下:

def fib(max):    n,a,b =0,0,1    while n < max:        yield b        a,b =b,a+b        n = n+1    return 'done'a = fib(10)print(fib(10))

  但是返回的不再是一个值,而是一个生成器,和上面的例子一样,大家可以看一下结果:

  那么这样就不占内存了,这里说一下generator和函数的执行流程,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时候从上次的返回yield语句处急需执行,也就是用多少,取多少,不占内存。

def fib(max):    n,a,b =0,0,1    while n < max:        yield b        a,b =b,a+b        n = n+1    return 'done'a = fib(10)print(fib(10))print(a.__next__())print(a.__next__())print(a.__next__())print("可以顺便干其他事情")print(a.__next__())print(a.__next__())结果:
112可以顺便干其他事情35

  在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

def fib(max):    n,a,b =0,0,1    while n < max:        yield b        a,b =b,a+b        n = n+1    return 'done'for i in fib(6):    print(i)    结果:112358

  但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果拿不到返回值,那么就会报错,所以为了不让报错,就要进行异常处理,拿到返回值,如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

def fib(max):    n,a,b =0,0,1    while n < max:        yield b        a,b =b,a+b        n = n+1    return 'done'g = fib(6)while True:    try:        x = next(g)        print('generator: ',x)    except StopIteration as e:        print("生成器返回值:",e.value)        break结果:generator:  1generator:  1generator:  2generator:  3generator:  5generator:  8生成器返回值: done

还可以通过yield实现在单线程的情况下实现并发运算的效果

import timedef consumer(name):    print("%s 准备学习啦!" %name)    while True:       lesson = yield       print("开始[%s]了,[%s]老师来讲课了!" %(lesson,name))def producer(name):    c = consumer('A')    c2 = consumer('B')    c.__next__()    c2.__next__()    print("同学们开始上课 了!")    for i in range(10):        time.sleep(1)        print("到了两个同学!")        c.send(i)        c2.send(i)结果:A 准备学习啦!B 准备学习啦!同学们开始上课 了!到了两个同学!开始[0]了,[A]老师来讲课了!开始[0]了,[B]老师来讲课了!到了两个同学!开始[1]了,[A]老师来讲课了!开始[1]了,[B]老师来讲课了!到了两个同学!开始[2]了,[A]老师来讲课了!开始[2]了,[B]老师来讲课了!到了两个同学!开始[3]了,[A]老师来讲课了!开始[3]了,[B]老师来讲课了!到了两个同学!开始[4]了,[A]老师来讲课了!开始[4]了,[B]老师来讲课了!到了两个同学!开始[5]了,[A]老师来讲课了!开始[5]了,[B]老师来讲课了!到了两个同学!开始[6]了,[A]老师来讲课了!开始[6]了,[B]老师来讲课了!到了两个同学!

  由上面的例子我么可以发现,python提供了两种基本的方式

   生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始

   生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果

——生成器函数

为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起急需执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行,生成器和迭代协议是密切相关的,可迭代的对象都有一个__next__()__成员方法,这个方法要么返回迭代的下一项,要买引起异常结束迭代。

# 函数有了yield之后,函数名+()就变成了生成器# return在生成器中代表生成器的中止,直接报错# next的作用是唤醒并继续执行# send的作用是唤醒并继续执行,发送一个信息到生成器内部'''生成器'''def create_counter(n):    print("create_counter")    while True:        yield n        print("increment n")        n +=1gen = create_counter(2)print(gen)print(next(gen))print(next(gen))结果:
create_counter2increment n3Process finished with exit code 0

  

——生成器表达式

生成器表达式来源于迭代和列表解析的组合,生成器和列表解析类似,但是它使用尖括号而不是方括号

>>> # 列表解析生成列表>>> [ x ** 3 for x in range(5)][0, 1, 8, 27, 64]>>> >>> # 生成器表达式>>> (x ** 3 for x in range(5))
at 0x000000000315F678>>>> # 两者之间转换>>> list(x ** 3 for x in range(5))[0, 1, 8, 27, 64]

  一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。

迭代器(迭代就是循环)

  我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list,tuple,dict,set,str等

一类是generator,包括生成器和带yield的generator function

这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否为可Iterable对象

>>> from collections import Iterable>>> isinstance([], Iterable)True>>> isinstance({}, Iterable)True>>> isinstance('abc', Iterable)True>>> isinstance((x for x in range(10)), Iterable)True>>> isinstance(100, Iterable)False

  而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

所以这里将一下迭代器

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator>>> isinstance((x for x in range(10)), Iterator)True>>> isinstance([], Iterator)False>>> isinstance({}, Iterator)False>>> isinstance('abc', Iterator)False

  

生成器都是Iterator对象,但listdictstr虽然是Iterable(可迭代对象),却不是Iterator(迭代器)

listdictstrIterable变成Iterator可以使用iter()函数

>>> isinstance(iter([]), Iterator)True>>> isinstance(iter('abc'), Iterator)True

  

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

  判断下列数据类型是可迭代对象or迭代器

s='hello'l=[1,2,3,4]t=(1,2,3)d={'a':1}set={1,2,3}f=open('a.txt')

  

s='hello'     #字符串是可迭代对象,但不是迭代器l=[1,2,3,4]     #列表是可迭代对象,但不是迭代器t=(1,2,3)       #元组是可迭代对象,但不是迭代器d={'a':1}        #字典是可迭代对象,但不是迭代器set={1,2,3}     #集合是可迭代对象,但不是迭代器f=open('test.txt') #文件是可迭代对象,但不是迭代器#如何判断是可迭代对象,只有__iter__方法,执行该方法得到的迭代器对象。# 及可迭代对象通过__iter__转成迭代器对象from collections import Iterator  #迭代器from collections import Iterable  #可迭代对象print(isinstance(s,Iterator))     #判断是不是迭代器print(isinstance(s,Iterable))       #判断是不是可迭代对象#把可迭代对象转换为迭代器print(isinstance(iter(s),Iterator))

  

 

 

小结:

  • 凡是可作用于for循环的对象都是Iterable类型;
  • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
  • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:    pass

 实际上完全等价于

# 首先获得Iterator对象:it = iter([1, 2, 3, 4, 5])# 循环:while True:    try:        # 获得下一个值:        x = next(it)    except StopIteration:        # 遇到StopIteration就退出循环        break

  

对yield的总结

  (1):通常的for..in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件。他可以是a = [1,2,3],也可以是a = [x*x for x in range(3)]。

它的缺点也很明显,就是所有数据都在内存里面,如果有海量的数据,将会非常耗内存。

  (2)生成器是可以迭代的,但是只可以读取它一次。因为用的时候才生成,比如a = (x*x for x in range(3))。!!!!注意这里是小括号而不是方括号。

  (3)生成器(generator)能够迭代的关键是他有next()方法,工作原理就是通过重复调用next()方法,直到捕获一个异常。

  (4)带有yield的函数不再是一个普通的函数,而是一个生成器generator,可用于迭代

  (5)yield是一个类似return 的关键字,迭代一次遇到yield的时候就返回yield后面或者右面的值。而且下一次迭代的时候,从上一次迭代遇到的yield后面的代码开始执行

  (6)yield就是return返回的一个值,并且记住这个返回的位置。下一次迭代就从这个位置开始。

  (7)带有yield的函数不仅仅是只用于for循环,而且可用于某个函数的参数,只要这个函数的参数也允许迭代参数。

  (8)send()和next()的区别就在于send可传递参数给yield表达式,这时候传递的参数就会作为yield表达式的值,而yield的参数是返回给调用者的值,也就是说send可以强行修改上一个yield表达式值。

  (9)send()和next()都有返回值,他们的返回值是当前迭代遇到的yield的时候,yield后面表达式的值,其实就是当前迭代yield后面的参数。

  (10)第一次调用时候必须先next()或send(),否则会报错,send后之所以为None是因为这时候没有上一个yield,所以也可以认为next()等同于send(None)

 
 
 
 
 
 

转载于:https://www.cnblogs.com/yoyo008/p/9366224.html

你可能感兴趣的文章
UIActionSheet 修改字体颜色
查看>>
Vue 框架-01- 入门篇 图文教程
查看>>
Spring注解之@Lazy注解,源码分析和总结
查看>>
多变量微积分笔记24——空间线积分
查看>>
Magento CE使用Redis的配置过程
查看>>
poi操作oracle数据库导出excel文件
查看>>
(转)Intent的基本使用方法总结
查看>>
Mac 下的Chrome 按什么快捷键调出页面调试工具
查看>>
Windows Phone开发(24):启动器与选择器之发送短信
查看>>
JS截取字符串常用方法
查看>>
Google非官方的Text To Speech和Speech Recognition的API
查看>>
stdext - A C++ STL Extensions Libary
查看>>
Django 内建 中间件组件
查看>>
bootstrap-Table服务端分页,获取到的数据怎么再页面的表格里显示
查看>>
进程间通信系列 之 socket套接字及其实例
查看>>
天气预报插件
查看>>
Unity 游戏框架搭建 (十三) 无需继承的单例的模板
查看>>
模块与包
查看>>
mysql忘记root密码
查看>>
apache服务器中设置目录不可访问
查看>>